FaaCeeBooK

08 noviembre 2010

Separador de Aceite

Función: Separar el aceite que sale del compresor hacia el sistema conjuntamente con el gas refrigerante y devolverlo al cárter, particularmente en aquellos casos en que hay la posibilidad de un retorno deficiente de aceite al compresor. La forma primaria y natural como debe ser resuelto el retorno de aceite al compresor, es por el adecuado dimensionamiento y diseño de las tuberías de refrigeración, especialmente la de succión. 
Aplicaciones: Para sistemas de baja temperatura, para sistemas de temperatura media en que la unidad condensadora esté por arriba del nivel del evaporador y para aquellos sistemas con tuberías muy largas entre la UC y la UE, o de multi-circuitos como es el caso de supermercados. Para sistemas de aire acondicionado por lo general no es necesario, salvo alguna excepción. 
Localización: En la tubería de descarga, inmediato a la salida del compresor. 







Válvula de Expansión Termostatica


Una válvula de expansión termostática (a menudo abreviado como VET o válvula TX en inglés) es un dispositivo de expansión el cual es un componente clave en sistemas de refrigeración y aire acondicionado, que tiene la capacidad de generar la caída de presión necesaria entre el condensador y el evaporador en el sistema. Básicamente su misión, en los equipos de expansión directa (o seca), se restringe a dos funciones: la de controlar el caudal de refrigerante en estado líquido que ingresa al evaporador y la de sostener un sobrecalentamiento constante a la salida de este. Para realizar este cometido dispone de un bulbo sensor de temperatura que se encarga de cerrar o abrir la válvula para así disminuir o aumentar el ingreso de refrigerante y su consecuente evaporación dentro del evaporador, lo que implica una mayor o menor temperatura ambiente, respectivamente.
Este dispositivo permite mejorar la eficiencia de los sistemas de refrigeración y de aire acondicionado, ya que regula el flujo másicodel refrigerante en función de la carga térmica. El refrigerante que ingresa al evaporador de expansión directa lo hace en estado de mezcla líquido/vapor, ya que al salir de la válvula se produce una brusca caída de presión producida por la "expansión directa" del líquido refrigerante, lo que provoca un parcial cambio de estado del fluido a la entrada del evaporador. A este fenómeno producido en válvulas se le conoce como flash-gas.



Congelacion Rapida y Lenta

La congelación de alimentos es una forma de conservación que se basa en la solidificación del agua contenida en éstos. Por ello uno de los factores a tener en cuenta en el proceso de congelación es el contenido de agua del producto. 
Efectos de la Congelación Rápida contra la congelación lenta:
La congelación puede dañar a algunos alimentos debido a que la formación de cristales de hielo rompe las membranas celulares. Este hecho no tiene efectos negativos en términos de seguridad (de hecho, también mueren células bacterianas), sin embargo, el alimento queda menos crujiente o firme. 
La congelación comercial es más rápida, gracias a lo cual los cristales de hielo que se forman son más pequeños. De esta forma, se reduce el daño ocasionado a las membranas celulares y se preserva aún más la calidad.
Métodos de Congelación Rápida:
El metodo de congelamiento se obtiene por los siguientes tres métodos o una combinación de éstos:
--Inmersión: Se introduce el producto en una solución de salmuera a bajas temperaturas
--Contacto indirecto: Por lo general son congeladores de puerta en donde el producto se coloca encima de placas metálicas a través de las cuales circula un refrigerante. (pequeñas cantidades)
--Corrientes de aire: Se usa el efecto combinado de temperaturas bajas y velocidad del aire alta, lo que produce una alta transferencia de calor del producto. En general se debe tener la consideración que el aire pueda circular libremente alrededor de todas las partes del producto.
Métodos de Congelación Lenta:
En el método lento se coloca el producto a bajas temperaturas y se deja congelar, el rango de temperatura es entre 0 ºF a -40 ºF; como la circulación del aire es por lo general mediante convección natural, el tiempo de congelación dependerá del volumen de producto y condiciones del congelador.


Los productos de congelación rápida son de mejor calidad que los de congelación lenta por los siguientes motivos: los cristales de hielo formados en la congelación rápida son más pequeños por lo que causan menos daños a las células de los tejidos del producto congelado.
A su vez, como el periodo de congelación es más corto, hay menor tiempo para difusión de sales y separación del agua en forma de hielo.

04 noviembre 2010

Conexiones

Arranque estrella y triángulo.


Las conexiones de un motor son muy sencillas de realizar, para ello el fabricante dispone en la carcasa del motor de una caja de conexiones con 6 bornes, en donde nosotros haremos las conexiones pertinentes, dependiendo de si deseamos una conexión tipo estrella o una conexión tipo triángulo. Veámoslo con unos gráficos:

conexión estrella conexión triángulo

¿Pero como se hacen éstas conexiones en la caja de bornes? Mirar éstos dos gráficos:

conexión estrella conexión triángulo

Ahora bien, puede ser que nos interese hacer, mediante contactores, un cambio de conexión estrella-triángulo, en ese caso solo tenemos que conectar la salida de los contactores a la caja de bornes.
Este tipo de arranque se utiliza para limitar la intensidad absorbida en el momento de arranque del motor. Si disponemos de un motor de 220 V y lo conectamos, en primer lugar, en estrella, tendremos una tensión de 127 V, con la cual, obtendriamos una intensidad 2 veces la nominal. En cambio, si lo hacemos directamente, tendríamos una intensidad de 5 veces la nominal. Al conectar primero en estrella y después en triángulo, mediante un temporizador, reducimos el sufrimiento del bobinado al rebajar la intensidad de absorción.
En la actualidad existen unos equipos llamados arrancadores estrella-triángulo que realizan este cometido de forma mucho más exacta, pues, lo ideal es que se realice el cambio de estrella a triángulo cuando el motor halla alcanzado el 80% de su velocidad nominal.

03 noviembre 2010

Tipos de Motores Electricos

Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por medio de interacciones electromagnéticas. Algunos de los motores eléctricos son reversibles, pueden transformar energía mecánica en energía eléctrica funcionando como generadores.


Existen varios tipos de motores y continuará proliferando nuevos tipos de motores según avance la tecnología. Pero antes de adentrarnos en la clasificación, vamos a definir los elementos que componen a los motores.

1. La carcasa o caja que envuelve las partes eléctricas del motor, es la parte externa.
2. El inductor, llamado estartor cuando se trata de motores de corriente alterna, consta de un apilado de chapas magnéticas y sobre ellas está enrollado el bobinado estatórico, que es una parte fija y unida a la carcasa.
3. El inducido, llamado rotor cuando se trata de motores de corriente alterna, consta de un apilado de chapas magnéticas y sobre ellas está enrollado el bobinado rotórico, que constituye la parte móvil del motor y resulta ser la salida o eje del motor.

Vamos a clasificarlos:

1. Motores de corriente alterna, se usan mucho en la industria, sobretodo, el motor trifásico asíncrono de jaula de ardilla.
2. Motores de corriente continua, suelen utilizarse cuando se necesita precisión en la velocidad, montacargas, locomoción, etc.
3. Motores universales. Son los que pueden funcionan con corriente alterna o continua, se usan mucho en electrodomésticos. Son los motores con colector.

Pero no nos quedemos aquí, realicemos una clasificación más amplia:

Motor de corriente alterna.

Podemos clasificarlos de varias maneras, por su velocidad de giro, por el tipo de rotor y por el número de fases de alimentación. Vamos a ello:

1. Por su velocidad de giro.

1. Asíncronos. Un motor se considera asíncrono cuando la velocidad del campo magnético generado por el estártor supera a la velocidad de giro del rotor.
2. Síncronos. Un motor se considera síncrono cuando la velocidad del campo magnético del estártor es igual a la velocidad de giro del rotor. Recordar que el rotor es la parte móvil del motor. Dentro de los motores síncronos, nos encontramos con una subclasificación:

- Motores síncronos trifásicos.
- Motores asíncronos sincronizados.
- Motores con un rotor de imán permanente.

2. Por el tipo de rotor.

- Motores de anillos rozantes.
- Motores con colector.
- Motores de jaula de ardilla.

3. Por su número de fases de alimentación.

- Motores monofásicos.
- Motores bifásicos.
- Motores trifásicos.
- Motores con arranque auxiliar bobinado.
- Motores con arranque auxiliar bobinado y con condensador.

Motor de corriente continua.

La clasificación de este tipo de motores se realiza en función de los bobinados del inductor y del inducido:

- Motores de excitación en serie.
- Motores de excitación en paralelo.
- Motores de excitación compuesta.